Introducing adjuvant-loaded particulate hepatitis B core antigen as an alternative therapeutic hepatitis B vaccine component

引入佐剂颗粒乙肝核心抗原作为替代治疗性乙肝疫苗成分

阅读:4
作者:Jinpeng Su, Zahra Harati Taji, Anna D Kosinska, Edanur Ates Oz, Zhe Xie, Pavlo Bielytskyi, Mikhail Shein, Philipp Hagen, Shohreh Esmaeili, Katja Steiger, Ulrike Protzer, Anne K Schütz

Aims

Particulate hepatitis B core antigen (HBcoreAg) is a potent immunogen used as a vaccine carrier platform. HBcoreAg produced in E. coli encapsidates random bacterial RNA (bRNA). Using the heterologous protein-prime, viral-vector-boost therapeutic hepatitis B vaccine TherVacB, we compared the properties of different HBcoreAg forms. We explored how the content of HBcoreAg modulates antigen stability, immunogenicity, and antiviral efficacy.

Background & aims

Particulate hepatitis B core antigen (HBcoreAg) is a potent immunogen used as a vaccine carrier platform. HBcoreAg produced in E. coli encapsidates random bacterial RNA (bRNA). Using the heterologous protein-prime, viral-vector-boost therapeutic hepatitis B vaccine TherVacB, we compared the properties of different HBcoreAg forms. We explored how the content of HBcoreAg modulates antigen stability, immunogenicity, and antiviral efficacy.

Conclusion

Adjuvant-loaded HBcoreAg retained capsid integrity and stability, was as immunogenic in vivo as externally adjuvanted HBcoreAg, requiring lower adjuvant levels, and supported immunity against co-administered, non-adjuvanted HBsAg. Thus, adjuvant-loaded HBcoreAg represents a promising novel platform for vaccine development. Impact and implications: Hepatitis B core antigen (HBcoreAg) recapitulates the capsid of the HBV that hosts the viral genome. Produced recombinantly, it is not infectious but emerges as a potent immunogen in vaccine development. In this preclinical study, we show that loading HBcoreAg with defined nucleic-acid-based adjuvants on the one hand stabilizes the HBcoreAg with standardized capsid content and, on the other hand, efficiently promotes the immunity of HBcoreAg and a co-administered antigen, allowing for reduced adjuvant doses. Therefore, adjuvant-loaded HBcoreAg not only serves as an encouraging option for therapeutic hepatitis B vaccines, but could also act as an efficient adjuvant delivery system for other types of vaccine.

Methods

bRNA was removed from HBcoreAg by capsid disassembly, followed by reassembly in the absence or presence of specific nucleic acid-based adjuvants poly I:C or CpG. The morphology and structure of empty, bRNA-containing and adjuvant-loaded HBcoreAg were monitored by electron microscopy and nuclear magnetic resonance spectroscopy. Empty, bRNA-containing or adjuvant-loaded HBcoreAg were applied together with HBsAg and with or without nucleic acid-based external adjuvants within the TherVacB regimen in both wild-type and HBV-carrier mice.

Results

While HBcoreAg retained its structure upon bRNA removal, its stability and immunogenicity decreased significantly. Loading HBcoreAg with nucleic acid-based adjuvants re-established stability of the capsid-like antigen. Immunization with poly I:C- or CpG-loaded HBcoreAg induced high antibody titers against co-administered HBsAg. When applied within the TherVacB regimen, they activated vigorous HBcoreAg- and HBsAg-specific T-cell responses in wild-type and HBV-carrier mice, requiring a significantly lower dose of adjuvant compared to externally added adjuvant. Finally, immunization with adjuvant-loaded HBcoreAg mixed with HBsAg led to long-term control of persistent HBV replication in the HBV-carrier mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。