A generic method to synthesise graphitic carbon coated nanoparticles in large scale and their derivative polymer nanocomposites

大规模合成石墨碳包覆纳米粒子及其衍生聚合物纳米复合材料的通用方法

阅读:8
作者:Nannan Wang, Zhuxian Yang, Fang Xu, Kunyapat Thummavichai, Hongmei Chen, Yongde Xia, Yanqiu Zhu

Abstract

A versatile Rotary Chemical Vapour Deposition (RCVD) technique for the in-situ synthesis of large scale carbon-coated non-magnetic metal oxide nanoparticles (NPs) is presented, and a controllable coating thickness varying between 1-5 nm has been achieved. The technique has significantly up-scaled the traditional chemical vapour deposition (CVD) production for NPs from mg level to 10 s of grams per batch, with the potential for continuous manufacturing. The resulting smooth and uniform C-coatings sheathing the inner core metal oxide NPs are made of well-crystallised graphitic layers, as confirmed by electron microscopy imaging, electron dispersive spectrum elemental line scan, X-ray powder diffractions and Raman spectroscopy. Using nylon 12 as an example matrix, we further demonstrate that the inclusion of C-coated composite NPs into the matrix improves the thermal conductivity, from 0.205 W∙m-1∙K-1 for neat nylon 12 to 0.305 W∙m-1∙K-1 for a 4 wt% C-coated ZnO composite, in addition to a 27% improvement in tensile strength at 2 wt% addition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。