Global but not gonadotrope-specific disruption of Bmal1 abolishes the luteinizing hormone surge without affecting ovulation

Bmal1 的整体破坏(而非促性腺激素特异性破坏)会消除促黄体激素激增,而不会影响排卵

阅读:5
作者:Adrienne Chu, Lei Zhu, Ian D Blum, Oliver Mai, Alexei Leliavski, Jan Fahrenkrug, Henrik Oster, Ulrich Boehm, Kai-Florian Storch

Abstract

Although there is evidence for a circadian regulation of the preovulatory LH surge, the contributions of individual tissue clocks to this process remain unclear. We studied female mice deficient in the Bmal1 gene (Bmal1(-/-)), which is essential for circadian clock function, and found that they lack the proestrous LH surge. However, spontaneous ovulation on the day of estrus was unaffected in these animals. Bmal1(-/-) females were also deficient in the proestrous FSH surge, which, like the LH surge, is GnRH-dependent. In the absence of circadian or external timing cues, Bmal1(-/-) females continued to cycle in constant darkness albeit with increased cycle length and time spent in estrus. Because pituitary gonadotropes are the source of circulating LH and FSH, we assessed hypophyseal circadian clock function and found that female pituitaries rhythmically express clock components throughout all cycle stages. To determine the role of the gonadotrope clock in the preovulatory LH and FSH surge process, we generated mice that specifically lack BMAL1 in gonadotropes (GBmal1KO). GBmal1KO females exhibited a modest elevation in both proestrous and baseline LH levels across all estrous stages. BMAL1 elimination from gonadotropes also led to increased variability in estrous cycle length, yet GBmal1KO animals were otherwise reproductively normal. Together our data suggest that the intrinsic clock in gonadotropes is dispensable for LH surge regulation but contributes to estrous cycle robustness. Thus, clocks in the suprachiasmatic nucleus or elsewhere must be involved in the generation of the LH surge, which, surprisingly, is not required for spontaneous ovulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。