In vivo opening of the mitochondrial permeability transition pore in a rat model of ventricular fibrillation and closed-chest resuscitation

大鼠心室颤动及闭胸复苏模型中线粒体通透性转换孔的体内开放

阅读:4
作者:Iyad M Ayoub, Jeejabai Radhakrishnan, Raúl J Gazmuri

Abstract

Opening of the mitochondrial permeability transition pore (mPTP) is considered central to reperfusion injury. Yet, most of our knowledge comes from observations in isolated mitochondria, cells, and organs. We used a rat model of ventricular fibrillation (VF) and closed-chest resuscitation to examine whether the mPTP opens in vivo and whether cyclosporine A (CsA) attenuates the associated myocardial injury. Two series of 26 and 18 rats each underwent 10 minutes of untreated VF before attempting resuscitation. In series-1, rats received 50 µCi of tritium-labeled 2-deoxyglucose ([3H]DOG) harvesting their hearts at baseline (n=5), during VF (n=5), during resuscitation (n=6), and at post-resuscitation 60 minutes (n=5) and 240 minutes (n=5). mPTP opening was estimated measuring the ratio of mitochondria to left ventricular intracellular [3H]. In series-2, rats received 10 mg/kg of CsA or vehicle before resuscitation, measuring mitochondrial NAD+ content to indirectly assess mPTP opening. In Series-1, the mPTP opening ratio vs baseline (10.4 ± 1.9) increased during VF (16.8 ± 2.4, NS), closed-chest resuscitation (20.8 ± 6.3, P<0.05), and at post-resuscitation 60 minutes (20.9 ± 4.7, P<0.05) and 240 minutes (25.7 ± 11.0, P<0.01). In series 2, CsA failed to attenuate reductions in mitochondrial NAD+ and did not affect plasma cytochrome c, plasma cardiac troponin I, myocardial function, and survival. We report for the first time in an intact rat model of VF that mPTP opens during closed-chest resuscitation consistent with previous observations in mitochondria, cells, and organs of mPTP opening upon reperfusion. CsA, at the dose of 10 mg/kg neither prevented mPTP opening nor attenuated post-resuscitation myocardial injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。