Proximity induced band gap opening in topological-magnetic heterostructure (Ni80Fe20/p-TlBiSe2/p-Si) under ambient condition

环境条件下拓扑磁性异质结构 (Ni80Fe20/p-TlBiSe2/p-Si) 中的邻近效应导致带隙打开

阅读:7
作者:Roshani Singh, Gyanendra Kumar Maurya, Vidushi Gautam, Rachana Kumar, Mahesh Kumar, K G Suresh, Brahmaranjan Panigrahi, Chandrasekhar Murapaka, Arbinda Haldar, Pramod Kumar

Abstract

The broken time reversal symmetry states may result in the opening of a band gap in TlBiSe2 leading to several interesting phenomena which are potentially relevant for spintronic applications. In this work, the quantum interference and magnetic proximity effects have been studied in Ni80Fe20/p-TlBiSe2/p-Si (Magnetic/TI) heterostructure using physical vapor deposition technique. Raman analysis shows the symmetry breaking with the appearance of A21u mode. The electrical characteristics are investigated under dark and illumination conditions in the absence as well as in the presence of a magnetic field. The outcomes of the examined device reveal excellent photo response in both forward and reverse bias regions. Interestingly, under a magnetic field, the device shows a reduction in electrical conductivity at ambient conditions due to the crossover of weak localization and separation of weak antilocalization, which are experimentally confirmed by magnetoresistance measurement. Further, the photo response has also been assessed by the transient absorption spectroscopy through analysis of charge transfer and carrier relaxation mechanisms. Our results can be beneficial for quantum computation and further study of topological insulator/ferromagnet heterostructure and topological material based spintronic devices due to high spin orbit coupling along with dissipationless conduction channels at the surface states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。