ATAD2 is a potential immunotherapy target for patients with small cell lung cancer harboring HLA-A∗0201

ATAD2 是携带 HLA-A∗0201 的小细胞肺癌患者的潜在免疫治疗靶点。

阅读:7
作者:Li Yuan, Sini Li, Yixiang Zhu, Lin Yang, Xue Zhang, Yan Qu, Zhijie Wang, Jianchun Duan, Jia Zhong, Yanhua Tian, Lihui Liu, Boyang Sun, Kailun Fei, Zheng Liu, Jian Zhang, Yan He, Yufeng Guo, DanMing He, Wei Zhuang, Jinsong Zhang, Zixiao Ma, Hua Bai, Jie Wang

Background

Small cell lung cancer (SCLC) represents a highly aggressive neuroendocrine tumour with a dismal prognosis. Currently, the identification of a specific tumour antigen that can facilitate immune-based therapies for SCLC remains elusive.

Methods

We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyse cancer/testis antigens (CTAs) in SCLC cell lines and human tumour specimens. Immunohistochemistry of clinical specimens was performed to compare protein expression in SCLC, non-small cell lung cancer (NSCLC), and matched normal-adjacent tissues. Additionally, publicly available RNA sequencing databases were interrogated to identify gene expression patterns in different SCLC subtypes and in different disease stages. Findings: Distinct numbers and types of CTAs were identified across SCLC subtypes, with significantly higher expression levels of ATPase family AAA domain-containing protein 2 (ATAD2) observed in SCLC compared to normal adjacent tissues and NSCLC tissues. A dynamic expression pattern of ATAD2 was found throughout the clinical course of SCLC and exhibited a positive correlation with achaete-scute family bHLH transcription factor 1 (ASCL1) expression in SCLC. Immunopeptidomics analysis identified the YSDDDVPSV sequence derived from the HLA-A∗02:01 restriction epitope of ATAD2 as a highly promising tumour antigen candidate for potential immunotherapy applications. YSDDDVPSV immunopeptides were confirmed to be present in SCLC-A and SCLC-N with HLA-A∗02:01 restriction. Notably, HLA-A∗02:01 T cells exhibited a robust response upon stimulation with YSDDDVPSV immunopeptide pulsed by T2 cells. Interpretation: Our findings highlight the potential of targeting the ATAD2 YSDDDVPSV immunopeptide for SCLC immunotherapy, thereby offering a promising avenue for the development of adoptive T cell therapies to effectively treat ASCL1-positive or NEUROD1-positive SCLC carrying HLA-A∗02:01. Funding: This study was supported by the National key R&D program of China (2022YFC2505000); National Natural Science Foundation of China (NSFC) general program (82272796) NSFC special program (82241229); CAMS Innovation Fund for Medical Sciences (CIFMS 2022-I2M-1-009); CAMS Key Laboratory of Translational Research on Lung Cancer (2018PT31035); Aiyou foundation (KY201701). National key R&D program of China (2022YFC2505004). NSFC general program (81972905). Medical Oncology Key Foundation of Cancer Hospital Chinese Academy of Medical Sciences (CICAMS-MOCP2022012).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。