Carbohydrates and activity of natural and recombinant tissue factor

碳水化合物和天然及重组组织因子的活性

阅读:25
作者:Jolanta Krudysz-Amblo, Mark E Jennings 2nd, Kenneth G Mann, Saulius Butenas

Abstract

The effect of glycosylation on tissue factor (TF) activity was evaluated, and site-specific glycosylation of full-length recombinant TF (rTF) and that of natural TF from human placenta (pTF) were studied by liquid chromatography-tandem mass spectrometry. The amidolytic activity of the TF.factor VIIa (FVIIa) complex toward a fluorogenic substrate showed that the catalytic efficiency (V(max)) of the complex increased in the order rTF(1-243) (Escherichia coli) < rTF(1-263) (Sf9 insect cells) < pTF for the glycosylated and deglycosylated forms. Substrate hydrolysis was unaltered by deglycosylation. In FXase, the K(m) of FX for rTF(1-263)-FVIIa remained unchanged after deglycosylation, whereas the k(cat) decreased slightly. A pronounced decrease, 4-fold, in k(cat) was observed for pTF.FVIIa upon deglycosylation, whereas the K(m) was minimally altered. The parameters of FX activation by both rTF(1-263D)-FVIIa and pTF(D)-FVIIa were identical and similar to those for rTF(1-243)-FVIIa. In conclusion, carbohydrates significantly influence the activity of TF proteins. Carbohydrate analysis revealed glycosylation on asparagines 11, 124, and 137 in both rTF(1-263) and pTF. The carbohydrates of rTF(1-263) contain high mannose, hybrid, and fucosylated glycans. Natural pTF contains no high mannose glycans but is modified with hybrid, highly fucosylated, and sialylated sugars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。