Improved methanol tolerance of Rhizomucor miehei lipase based on N‑glycosylation within the α-helix region and its application in biodiesel production

基于 α 螺旋区域内的 N-糖基化提高 Rhizomucor miehei 脂肪酶的甲醇耐受性及其在生物柴油生产中的应用

阅读:5
作者:Miao Tian #, Lingmei Yang #, Zhiyuan Wang, Pengmei Lv, Junying Fu, Changlin Miao, Ming Li, Tao Liu, Wen Luo

Background

Liquid lipases are widely used to convert oil into biodiesel. Methanol-resistant lipases with high catalytic activity are the first choice for practical production. Rhizomucor miehei lipase (RML) is a single-chain α/β-type protein that is widely used in biodiesel preparation. Improving the catalytic activity and methanol tolerance of RML is necessary to realise the industrial production of biodiesel.

Conclusions

These results indicate that optimising N-glycosylation modification in the α-helix structure is an effective strategy for improving the performance of ProRML. This study provides an effective approach to improve the design of the enzyme and the properties of lipase mutants, thereby rendering them suitable for industrial biomass conversion.

Results

In this study, a semi-rational design method was used to optimise the catalytic activity and methanol tolerance of ProRML. After N-glycosylation modification of the α-helix of the mature peptide in ProRML, the resulting mutants N218, N93, N115, N260, and N183 increased enzyme activity by 66.81, 13.54, 10.33, 3.69, and 2.39 times than that of WT, respectively. The residual activities of N218 and N260 were 88.78% and 86.08% after incubation in 50% methanol for 2.5 h, respectively. In addition, the biodiesel yield of all mutants was improved when methanol was added once and reacted for 24 h with colza oil as the raw material. N260 and N218 increased the biodiesel yield from 9.49% to 88.75% and 90.46%, respectively. Conclusions: These results indicate that optimising N-glycosylation modification in the α-helix structure is an effective strategy for improving the performance of ProRML. This study provides an effective approach to improve the design of the enzyme and the properties of lipase mutants, thereby rendering them suitable for industrial biomass conversion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。