RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB

大肠杆菌的 RelB 和 RelE 形成紧密复合物,通过 RelB 中的带状螺旋-螺旋基序抑制转录

阅读:4
作者:Martin Overgaard, Jonas Borch, Kenn Gerdes

Abstract

RelB, the ribbon-helix-helix (RHH) repressor encoded by the relBE toxin-antitoxin locus of Escherichia coli, interacts with RelE and thereby counteracts the mRNA cleavage activity of RelE. In addition, RelB dimers repress the strong relBE promoter and this repression by RelB is enhanced by RelE; that is, RelE functions as a transcriptional co-repressor. RelB is a Lon protease substrate, and Lon is required both for activation of relBE transcription and for activation of the mRNA cleavage activity of RelE. Here we characterize the molecular interactions important for transcriptional control of the relBE model operon. Using an in vivo screen for relB mutants, we identified multiple nucleotide changes that map to important amino acid positions within the DNA-binding domain formed by the N-terminal RHH motif of RelB. Analysis of DNA binding of a subset of these mutant RHH proteins by gel-shift assays, transcriptional fusion assays and a structure model of RelB-DNA revealed amino acid residues making crucial DNA-backbone contacts within the operator (relO) DNA. Mutational and footprinting analyses of relO showed that RelB dimers bind on the same face of the DNA helix and that the RHH motif recognizes four 6-bp repeats within the bipartite binding site. The spacing between each half-site was found to be essential for cooperative interactions between adjacently bound RelB dimers stabilized by the co-repressor RelE. Kinetic and stoichiometric measurements of the interaction between RelB and RelE confirmed that the proteins form a high-affinity complex with a 2:1 stoichiometry. Lon degraded RelB in vitro and degradation was inhibited by RelE, consistent with the proposal that RelE protects RelB from proteolysis by Lon in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。