Fatty acid challenge shifts cellular energy metabolism in a substrate-specific manner in primary bovine neonatal hepatocytes

脂肪酸刺激以底物特异性方式改变原代牛新生肝细胞的能量代谢

阅读:5
作者:T L Chandler, S J Kendall, H M White

Abstract

Adipose tissue mobilization increases circulating fatty acid (FA) concentrations, leads to increased hepatic FA uptake, and influences hepatic metabolism. Our objective was to trace carbon flux through metabolic pathways in primary bovine neonatal hepatocytes challenged with FA, and to examine the effect of FA challenge on oxidative stress. Primary bovine neonatal hepatocytes were isolated from 4 Holstein bull calves and maintained for 24 h before treatment with either 0 or 1 mM FA cocktail. After 21 h, either [1-14C]C16:0 or [2-14C]sodium pyruvate was added to measure complete and incomplete oxidation and cellular glycogen. Cellular and media triglyceride (TG), and glucose and ß-hydroxybutyrate (BHB) export were quantified, as well as reactive oxygen species and cellular glutathione (GSH/GSSH). Fatty acid treatment increased cellular, but not media TG, and although complete oxidation of [1-14C]C16:0 was not affected by FA, BHB export was increased. Reactive oxygen species were increased with FA treatment and GSSH was marginally increased such that the ratio of GSH:GSSG was marginally decreased. Glucose export increased, and cellular glycogen marginally increased with FA treatment while [2-14C]sodium pyruvate oxidation was decreased. These data suggest that FA treatment shifts cellular energy metabolism in a substrate-specific manner, spares pyruvate carbon from oxidation, and stimulates glucose synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。