Morphological and physiological adaptations of psychrophilic Pseudarthrobacter psychrotolerans YJ56 under temperature stress

嗜冷假节杆菌YJ56在温度胁迫下的形态和生理适应性

阅读:5
作者:Yongjun Son, Jihyeon Min, Yoonjae Shin, Woojun Park

Abstract

Both culture-independent and culture-dependent analyses using Nanopore-based 16S rRNA sequencing showed that short-term exposure of Antarctic soils to low temperature increased biomass with lower bacterial diversity and maintained high numbers of the phylum Proteobacteria, Firmicute, and Actinobacteria including Pseudarthrobacter species. The psychrophilic Pseudarthrobacter psychrotolerans YJ56 had superior growth at 13 °C, but could not grow at 30 °C, compared to other bacteria isolated from the same Antarctic soil. Unlike a single rod-shaped cell at 13 °C, strain YJ56 at 25 °C was morphologically shifted into a filamentous bacterium with several branches. Comparative genomics of strain YJ56 with other genera in the phylum Actinobacteria indicate remarkable copy numbers of rimJ genes that are possibly involved in dual functions, acetylation of ribosomal proteins, and stabilization of ribosomes by direct binding. Our proteomic data suggested that Actinobacteria cells experienced physiological stresses at 25 °C, showing the upregulation of chaperone proteins, GroEL and catalase, KatE. Level of proteins involved in the assembly of 50S ribosomal proteins and L29 in 50S ribosomal proteins increased at 13 °C, which suggested distinct roles of many ribosomal proteins under different conditions. Taken together, our data highlights the cellular filamentation and protein homeostasis of a psychrophilic YJ56 strain in coping with high-temperature stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。