Modulation of ventromedial orbitofrontal cortical glutamatergic activity affects the explore-exploit balance and influences value-based decision-making

腹内侧眶额皮质谷氨酸能活动的调节影响探索-利用平衡并影响基于价值的决策

阅读:10
作者:Samuel A Barnes, Daniel G Dillon, Jared W Young, Michael L Thomas, Lauren Faget, Ji Hoon Yoo, Andre Der-Avakian, Thomas S Hnasko, Mark A Geyer, Dhakshin S Ramanathan

Abstract

The balance between exploration and exploitation is essential for decision-making. The present study investigated the role of ventromedial orbitofrontal cortex (vmOFC) glutamate neurons in mediating value-based decision-making by first using optogenetics to manipulate vmOFC glutamate activity in rats during a probabilistic reversal learning (PRL) task. Rats that received vmOFC activation during informative feedback completed fewer reversals and exhibited reduced reward sensitivity relative to rats. Analysis with a Q-learning computational model revealed that increased vmOFC activity did not affect the learning rate but instead promoted maladaptive exploration. By contrast, vmOFC inhibition increased the number of completed reversals and increased exploitative behavior. In a separate group of animals, calcium activity of vmOFC glutamate neurons was recorded using fiber photometry. Complementing our results above, we found that suppression of vmOFC activity during the latter part of rewarded trials was associated with improved PRL performance, greater win-stay responding and selecting the correct choice on the next trial. These data demonstrate that excessive vmOFC activity during reward feedback disrupted value-based decision-making by increasing the maladaptive exploration of lower-valued options. Our findings support the premise that pharmacological interventions that normalize aberrant vmOFC glutamate activity during reward feedback processing may attenuate deficits in value-based decision-making.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。