Assessment of Short-Term Engraftment Potential of Ex Vivo Expanded Hematopoietic Stem Cells Using Normal Fetal Mouse in Utero Transplantation Model

使用正常胎儿小鼠宫内移植模型评估体外扩增造血干细胞的短期植入潜力

阅读:7
作者:Morteza Zarrabi #, Elaheh Afzal #, Mohammad Hassan Asghari #, Marzieh Ebrahimi

Conclusion

The presented data showed that expanded MNCs compared to unexpended cells are capable of more rapid and higher short-term engraftment in normal fetal mouse. It could also be suggested that in utero transplantation (IUT) of normal fetal mice could be an appropriate substitute for NOD/SCID mice in xenotransplantation studies.

Methods

In this experimental study, briefly, isolated hUCB-MNCs were cultured in common expansion medium containing stem cell factor, Flt3 ligand and thrombopoietin. The unexpanded and expanded cells were transplanted to the fetal mice on gestational days of 11.5-13.5. After administration of human hematopoiesis growth factors (hHGFs), presence of human CD45+ cells, in the peripheral blood of recipients, was assessed at various time points after transplantation.

Objective

Ex vivo expansion is a promising strategy to overcome the low number of human umbilical cord blood hematopoietic stem cells (hUCB-HSCs). Although based on the obtained

Results

The expanded MNCs showed 32-fold increase in the expression of CD34+38- phenotype and about 3-fold higher clonogenic potential as compared to the uncultured cells. Four weeks after transplantation, 73% (19/26) of expanded-cell recipients and 35% (7/20) of unexpanded-cell recipients were found to be successfully engrafted with human CD45+ cells. The engraftment level of expanded MNCs was significantly (1.8-fold) higher than unexpanded cells. After hHGFs administration, the level was increased to 3.2, 3.8 and 2.6-fold at respectively 8, 12, and 16 weeks of post transplantation. The increased expression of CXCR4 protein in expanded MNCs is a likely explanation for the present findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。