Integrated omics profiling reveals systemic dysregulation and potential biomarkers in the blood of patients with neuromyelitis optica spectrum disorders

综合组学分析揭示视神经脊髓炎谱系疾病患者血液中的系统性失调和潜在生物标志物

阅读:6
作者:Zuoquan Xie #, Qinming Zhou #, Jin Hu #, Lu He, Huangyu Meng, Xiaoni Liu, Guangqiang Sun, Zhiyu Luo, Yuan Feng, Liang Li, Xingkun Chu, Chen Du, Dabing Yang, Xinying Yang, Jing Zhang, Changrong Ge, Xiang Zhang, Sheng Chen, Meiyu Geng3

Background

Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune conditions that affect the central nervous system. The contribution of peripheral abnormalities to the disease's pathogenesis is not well understood.

Conclusions

Our comprehensive blood profile analysis offers new insights into NMOSD pathophysiology, revealing significant peripheral immune and metabolic alterations. This work lays the groundwork for future biomarker identification and mechanistic studies in NMOSD, highlighting the potential of FAP as a marker of disease progression.

Methods

To investigate this, we employed a multi-omics approach analyzing blood samples from 52 NMOSD patients and 46 healthy controls (HC). This included mass cytometry, cytokine arrays, and targeted metabolomics. We then analyzed the peripheral changes of NMOSD, and features related to NMOSD's disease severity. Furthermore, an integrative analysis was conducted to identify the distinguishing characteristics of NMOSD from HC. Additionally, we unveiled the variations in peripheral features among different clinical subgroups within NMOSD. An independent cohort of 40 individuals with NMOSD was utilized to assess the serum levels of fibroblast activation protein alpha (FAP).

Results

Our analysis revealed a distinct peripheral immune and metabolic signature in NMOSD patients. This signature is characterized by an increase in monocytes and a decrease in regulatory T cells, dendritic cells, natural killer cells, and various T cell subsets. Additionally, we found elevated levels of inflammatory cytokines and reduced levels of tissue-repair cytokines. Metabolic changes were also evident, with higher levels of bile acids, lactates, triglycerides, and lower levels of dehydroepiandrosterone sulfate, homoarginine, octadecadienoic acid (FA[18:2]), and sphingolipids. We identified distinctive biomarkers differentiating NMOSD from HC and found blood factors correlating with disease severity. Among these, fibroblast activation protein alpha (FAP) was a notable marker of disease progression. Conclusions: Our comprehensive blood profile analysis offers new insights into NMOSD pathophysiology, revealing significant peripheral immune and metabolic alterations. This work lays the groundwork for future biomarker identification and mechanistic studies in NMOSD, highlighting the potential of FAP as a marker of disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。