Besnoitia besnoiti-driven endothelial host cell cycle alteration

Besnoitia besnoiti 驱动的内皮宿主细胞周期改变

阅读:4
作者:Zahady D Velásquez, Sara Lopez-Osorio, Learta Pervizaj-Oruqaj, Susanne Herold, Carlos Hermosilla, Anja Taubert

Abstract

Besnoitia besnoiti is an important obligate intracellular parasite of cattle which primarily infects host endothelial cells of blood vessels during the acute phase of infection. Similar to the closely related parasite Toxoplasma gondii, B. besnoiti has fast proliferating properties leading to rapid host cell lysis within 24-30 h p.i. in vitro. Some apicomplexan parasites were demonstrated to modulate the host cellular cell cycle to successfully perform their intracellular development. As such, we recently demonstrated that T. gondii tachyzoites induce G2/M arrest accompanied by chromosome missegregation, cell spindle alteration, formation of supernumerary centrosomes, and cytokinesis impairment when infecting primary bovine umbilical vein endothelial cells (BUVEC). Here, we follow a comparative approach by using the same host endothelial cell system for B. besnoiti infections. The current data showed that-in terms of host cell cycle modulation-infections of BUVEC by B. besnoiti tachyzoites indeed differ significantly from those by T. gondii. As such, cyclin expression patterns demonstrated a significant upregulation of cyclin E1 in B. besnoiti-infected BUVEC, thereby indicating parasite-driven host cell stasis at G1-to-S phase transition. In line, the mitotic phase of host cell cycle was not influenced since alterations of chromosome segregation, mitotic spindle formation, and cytokinesis were not observed. In contrast to respective T. gondii-related data, we furthermore found a significant upregulation of histone H3 (S10) phosphorylation in B. besnoiti-infected BUVEC, thereby indicating enhanced chromosome condensation to occur in these cells. In line to altered G1/S-transition, we here additionally showed that subcellular abundance of proliferating cell nuclear antigen (PCNA), a marker for G1 and S phase sub-stages, was affected by B. besnoiti since infected cells showed increased nuclear PCNA levels when compared with that of control cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。