Iron nitrosyl complexes are formed from nitrite in the human placenta

亚硝酰铁复合物是由人类胎盘中的亚硝酸盐形成的

阅读:11
作者:George T Mukosera, Patricia Principe, Eugenia Mata-Greenwood, Taiming Liu, Hobe Schroeder, Mana Parast, Arlin B Blood

Abstract

Placental nitric oxide (NO) is critical for maintaining perfusion in the maternal-fetal-placental circulation during normal pregnancy. NO and its many metabolites are also increased in pregnancies complicated by maternal inflammation such as preeclampsia, fetal growth restriction, gestational diabetes, and bacterial infection. However, it is unclear how increased levels of NO or its metabolites affect placental function or how the placenta deals with excessive levels of NO or its metabolites. Since there is uncertainty over the direction of change in plasma levels of NO metabolites in preeclampsia, we measured the levels of these metabolites at the placental tissue level. We found that NO metabolites are increased in placentas from patients with preeclampsia compared to healthy controls. We also discovered by ozone-based chemiluminescence and electron paramagnetic resonance that nitrite is efficiently converted into iron nitrosyl complexes (FeNOs) within the human placenta and also observed the existence of endogenous FeNOs within placentas from sheep and rats. We show these nitrite-derived FeNOs are relatively short-lived, predominantly protein-bound, heme-FeNOs. The efficient formation of FeNOs from nitrite in the human placenta hints toward the importance of both nitrite and FeNOs in placental physiology or pathology. As iron nitrosylation is an important posttranslational modification that affects the activity of multiple iron-containing proteins such as those in the electron transport chain, or those involved in epigenetic regulation, we conclude that FeNOs merit increased study in pregnancy complications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。