K+ currents activated by depolarization in cardiac fibroblasts

心脏成纤维细胞去极化激活的 K+ 电流

阅读:3
作者:Yoshiyuki Shibukawa, E Lisa Chilton, K Andrew Maccannell, Robert B Clark, Wayne R Giles

Abstract

K(+) currents expressed in freshly dispersed rat ventricular fibroblasts have been studied using whole-cell patch-clamp recordings. Depolarizing voltage steps from a holding potential of -90 mV activated time- and voltage-dependent outward currents at membrane potentials positive to approximately -30 mV. The relatively slow activation kinetics exhibited strong dependence on the membrane potential. Selected changes in extracellular K(+) concentration ([K(+)](o)) revealed that the reversal potentials of the tail currents changed as expected for a K(+) equilibrium potential. The activation and inactivation kinetics of this K(+) current, as well as its recovery from inactivation, were well-fitted by single exponential functions. The steady-state inactivation was well described by a Boltzmann function with a half-maximal inactivation potential (V(0.5)) of -24 mV. Increasing [K(+)](o) (from 5 to 100 mM) shifted this V(0.5) in the hyperpolarizing direction by -11 mV. Inactivation was slowed by increasing [K(+)](o) to 100 mM, and the rate of recovery from inactivation was decreased after increasing [K(+)](o). Block of this K(+) current by extracellular tetraethylammonium also slowed inactivation. These [K(+)](o)-induced changes and tetraethylammonium effects suggest an important role for a C-type inactivation mechanism. This K(+) current was sensitive to dendrotoxin-I (100 nM) and rTityustoxin Kalpha (50 nM).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。