pepDESC: A Method for the Detection of Differentially Expressed Proteins for Mass Spectrometry-Based Single-Cell Proteomics Using Peptide-level Information

pepDESC:一种利用肽级信息检测基于质谱的单细胞蛋白质组学差异表达蛋白的方法

阅读:5
作者:Yutong Zhang

Abstract

Single-cell proteomics as an emerging field has exhibited potential in revealing cellular heterogeneity at the functional level. However, accurate interpretation of single-cell proteomics data suffers from challenges such as measurement noise, internal heterogeneity, and the limited sample size of label-free quantitative mass spectrometry. Herein, the author describes peptide-level differential expression analysis for single-cell proteomic (pepDESC), a method for detecting differentially expressed proteins using peptide-level information designed for label-free quantitative mass spectrometry-based single-cell proteomics. While, in this study, the author focuses on the heterogeneity among the limited number of samples, pepDESC is also applicable to regular-size proteomics data. By balancing proteome coverage and quantification accuracy using peptide quantification, pepDESC is demonstrated to be effective in real-world single-cell and spike-in benchmark datasets. By applying pepDESC to published single-mouse macrophage data, the author found a large fraction of differentially expressed proteins among three types of cells, which remarkably revealed distinct dynamics of different cellular functions responding to lipopolysaccharide stimulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。