A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects

p190A RhoGAP 中的点突变影响纤毛发生并导致肾小球囊性肾缺陷

阅读:5
作者:Katherine Stewart, Yaned Gaitan, Maxwell E R Shafer, Lamine Aoudjit, Di Hu, Richa Sharma, Mathieu Tremblay, Hidetaka Ishii, Michael Marcotte, Daniela Stanga, You Chi Tang, Sami Kamel Boualia, Alana H T Nguyen, Tomoko Takano, Nathalie Lamarche-Vane, Silvia Vidal, Maxime Bouchard

Abstract

Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。