Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing

环境自由l-谷胱甘肽接枝氧化石墨烯/ZnO纳米复合材料的合成及电化学性能用于高选择性吡罗昔康传感

阅读:10
作者:N Dhanalakshmi, T Priya, S Thennarasu, S Sivanesan, N Thinakaran

Abstract

A simple and reliable strategy was proposed to engineer the glutathione grafted graphene oxide/ZnO nanocomposite (glutathione-GO/ZnO) as electrode material for the high-performance piroxicam sensor. The prepared glutathione-GO/ZnO nanocomposite was well characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The novel nanocomposite modified electrode showed the highest electrocatalytic activity towards piroxicam (oxidation potential is 0.52 V). Under controlled experimental parameters, the proposed sensor exhibited good linear responses to piroxicam concentrations ranging from 0.1 to 500 μM. The detection limit and sensitivity were calculated as 1.8 nM and 0.2 μA/μM·cm2, respectively. Moreover, it offered excellent selectivity, reproducibility, and long-term stability and can effectively ignore the interfering candidates commonly existing in the pharmaceutical tablets and human fluids even at a higher concentration. Finally, the reported sensor was successfully employed to the direct determination of piroxicam in practical samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。