Mechanical, nanomorphological and biological reconstruction of early‑stage apoptosis in HeLa cells induced by cytochalasin B

细胞松弛素B诱导HeLa细胞早期凋亡的机械、纳米形态和生物学重建

阅读:6
作者:Xuelian Su, Ling Zhang, Hong Kang, Baoping Zhang, Guangjie Bao, Jizeng Wang

Abstract

There is a growing interest in the fact that mechanical signals may be as important as biological signals in evaluating cell viability. To investigate the alterations in biomechanics, nanomorphology and biological apoptotic signals during early apoptosis, an apoptosis model was established for cervical cancer HeLa cells induced by cytochalasin B (CB). The cellular mechanical properties, geometry, morphology and expression of key apoptotic proteins were systematically analyzed. The findings indicated a marked decline in cellular elastic modulus and volume and a considerable increase in surface roughness occurring prior to the activation of biological apoptosis signals (such as phosphatidylserine exposure or activation of CD95/Fas). Moreover, the depolymerization of filamentous actin aggravated the intracellular crowding degree, which induced the redistribution of different‑sized protein molecules and protrusions across the cell membrane arising from excluded volume interactions. Statistical analysis revealed that the disassembly of the actin cytoskeleton was negatively correlated with the cellular elastic modulus and volume, but was positively correlated with surface roughness and CD95/Fas activation. The results of the present study suggest that compared with biological signals, mechanical and geometrical reconstruction is more sensitive during apoptosis and the increase in cell surface roughness arises from the redistribution of biophysical molecules. These results contribute to our in‑depth understanding of the apoptosis mechanisms of cancer cells mediated by cytochalasin B.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。