Selective inhibitory DNA aptamers of the human RNase H1

人类 RNase H1 的选择性抑制 DNA 适体

阅读:5
作者:Frédéric Pileur, Marie-Line Andreola, Eric Dausse, Justine Michel, Serge Moreau, Hirofumi Yamada, Sergei A Gaidamakov, Robert J Crouch, Jean-Jacques Toulmé, Christian Cazenave

Abstract

Human RNase H1 binds double-stranded RNA via its N-terminal domain and RNA-DNA hybrid via its C-terminal RNase H domain, the latter being closely related to Escherichia coli RNase HI. Using SELEX, we have generated a set of DNA sequences that can bind efficiently (K(d) values ranging from 10 to 80 nM) to the human RNase H1. None of them could fold into a simple perfect double-stranded DNA hairpin confirming that double-stranded DNA does not constitute a trivial ligand for the enzyme. Only two of the 37 DNA aptamers selected were inhibitors of human RNase H1 activity. The two inhibitory oligomers, V-2 and VI-2, were quite different in structure with V-2 folding into a large, imperfect but stable hairpin loop. The VI-2 structure consists of a central region unimolecular quadruplex formed by stacking of two guanine quartets flanked by the 5' and 3' tails that form a stem of six base pairs. Base pairing between the 5' and 3' tails appears crucial for conferring the inhibitory properties to the aptamer. Finally, the inhibitory aptamers were capable of completely abolishing the action of an antisense oligonucleotide in a rabbit reticulocyte lysate supplemented with human RNase H1, with IC50 ranging from 50 to 100 nM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。