Role of Doa1 in the Saccharomyces cerevisiae DNA damage response

Doa1 在酿酒酵母 DNA 损伤反应中的作用

阅读:5
作者:Ewa T Lis, Floyd E Romesberg

Abstract

The cellular response to DNA damage requires not only direct repair of the damage but also changes in the DNA replication machinery, chromatin, and transcription that facilitate survival. Here, we describe Saccharomyces cerevisiae Doa1, which helps to control the damage response by channeling ubiquitin from the proteosomal degradation pathway into pathways that mediate altered DNA replication and chromatin modification. DOA1 interacts with genes involved in PCNA ubiquitination, including RAD6, RAD18, RAD5, UBC13, and MMS2, as well as genes involved in histone H2B ubiquitination or deubiquitination, including RAD6, BRE1, LGE1, CDC73, UBP8, UBP10, and HTB2. In the absence of DOA1, damage-induced ubiquitination of PCNA does not occur. In addition, the level of ubiquitinated H2B is decreased under normal conditions and completely absent in the presence of DNA damage. In the case of PCNA, the defect associated with the doa1Delta mutant is alleviated by overexpression of ubiquitin, but in the case of H2B, it is not. The data suggest that Doa1 is the major source of ubiquitin for the DNA damage response and that Doa1 also plays an additional essential and more specific role in the monoubiquitination of histone H2B.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。