Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization

碳正离子清除剂辅助有机溶剂预处理减轻木质素表面屏障效应以提高生物质糖化利用率

阅读:4
作者:Qiulu Chu #, Wenyao Tong #, Jianqiang Chen, Shufang Wu, Yongcan Jin, Jinguang Hu, Kai Song

Background

Ethanol organosolv (EOS) pretreatment is one of the most efficient

Conclusions

Results in this work indicated proper additives could give rise to the form of less repolymerized surface lignin, which would decrease the unproductive binding of cellulase enzymes to surface lignin. Besides, the supplementation of additives (NS, MT and SA) resulted in a simultaneously increased surface area and decreased lignin coverage. All these factors contributed to the diminished surface barrier effect of lignin, thereby improving the ease of enzymatic hydrolysis of cellulose. The biorefinery process based on acidic EOS pretreatment assisted by carbocation scavenger was proved to enable the coproduction of fermentable sugars and lignin adsorbents, allowing the holistic utilization of lignocellulosic biomass for a sustainable biorefinery.

Results

Four different additives all helped mitigate lignin inhibition on cellulose hydrolysis in particular diminishing surface barrier effect, among which 2-naphthol-7-sulfonate showed the best performance in improving pretreatment efficacy, while mannitol and syringic acid could serve as novel green additives. Through the addition of 2-naphthol-7-sulfonate, selective lignin removal was increased up to 76%, while cellulose hydrolysis yield was improved by 85%. As a result, 35.78 kg cellulose and 16.63 kg hemicellulose from 100 kg poplar could be released and recovered as fermentable sugars, corresponding to a sugar yield of 78%. Moreover, 22.56 kg ethanol organosolv lignin and 17.53 kg enzymatic hydrolysis residue could be recovered as lignin adsorbents for textile dye removal, with the adsorption capacities of 45.87 and 103.09 mg g-1, respectively. Conclusions: Results in this work indicated proper additives could give rise to the form of less repolymerized surface lignin, which would decrease the unproductive binding of cellulase enzymes to surface lignin. Besides, the supplementation of additives (NS, MT and SA) resulted in a simultaneously increased surface area and decreased lignin coverage. All these factors contributed to the diminished surface barrier effect of lignin, thereby improving the ease of enzymatic hydrolysis of cellulose. The biorefinery process based on acidic EOS pretreatment assisted by carbocation scavenger was proved to enable the coproduction of fermentable sugars and lignin adsorbents, allowing the holistic utilization of lignocellulosic biomass for a sustainable biorefinery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。