Histamine promotes osteoclastogenesis through the differential expression of histamine receptors on osteoclasts and osteoblasts

组胺通过破骨细胞和成骨细胞上组胺受体的差异表达促进破骨细胞生成

阅读:7
作者:Martin Biosse-Duplan, Brigitte Baroukh, Michel Dy, Marie-Christine de Vernejoul, Jean-Louis Saffar

Abstract

In addition to the numerous roles of histamine in both the immune and nervous systems, previous studies have suggested that this bioamine might also be involved in bone metabolism. Following our observations of impaired bone resorption in ovariectomized rats after histamine receptor antagonist treatment, we focused in this study on osteoclasts and osteoclast precursors. We looked for a direct action of histamine on these cells using both in vivo and in vitro approaches. In vivo, we triggered a remodeling sequence in rat mandibular bone and treated the animals with either histamine or histamine receptor antagonists. Histamine was shown to increase the number of osteoclasts and osteoclast precursors whereas antagonists of histamine receptor-1 and -2 decreased both osteoclast recruitment and resorption. In vitro, spleen cells from histamine-deficient mice were treated with receptor activator for nuclear factor kappa B ligand and macrophage colony stimulating factor, giving rise to both reduced numbers of osteoclasts and decreased resorption on dentin slices. Histamine enhanced resorption in these cultures in a dose-dependent manner. In addition, we identified osteoclast precursors as a source of histamine. In contrast, histamine increased the receptor activator for nuclear factor kappa B ligand/osteoprotegerin ratio in primary osteoblasts that did not secrete histamine. We observed a differential expression of histamine receptor-1 and -2 mRNAs in both primary osteoclasts and osteoblasts, confirming their functional roles with selective antagonists. Thus, histamine acts directly on osteoclasts, osteoclast precursors, and osteoblasts, promoting osteoclastogenesis through autocrine/paracrine mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。