Na+ mechanism of delta-opioid receptor induced protection from anoxic K+ leakage in the cortex

δ-阿片受体的 Na+ 机制诱导皮质缺氧 K+ 漏出的保护作用

阅读:5
作者:D Chao, G Balboni, L H Lazarus, S Salvadori, Y Xia

Abstract

Activation of delta-opioid receptors (DOR) attenuates anoxic K(+) leakage and protects cortical neurons from anoxic insults by inhibiting Na(+) influx. It is unknown, however, which pathway(s) that mediates the Na(+) influx is the target of DOR signal. In the present work, we found that, in the cortex, (1) DOR protection was largely dependent on the inhibition of anoxic Na(+) influxes mediated by voltage-gated Na(+) channels; (2) DOR activation inhibited Na(+) influx mediated by ionotropic glutamate N-methyl-D-aspartate (NMDA) receptors, but not that by non-NMDA receptors, although both played a role in anoxic K(+) derangement; and (3) DOR activation had little effect on Na(+)/Ca(2+) exchanger-based response to anoxia. We conclude that DOR activation attenuates anoxic K(+) derangement by restricting Na(+) influx mediated by Na(+) channels and NMDA receptors, and that non-NMDA receptors and Na(+)/Ca(2+) exchangers, although involved in anoxic K(+) derangement in certain degrees, are less likely the targets of DOR signal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。