Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-β1/Smads signalling

紫檀芪通过抑制 miR-34a/Sirt1/p53 和 TGF-β1/Smads 信号传导预防果糖诱导的肝纤维化中的肝细胞上皮-间质转化

阅读:6
作者:Lin Song, Tian-Yu Chen, Xiao-Juan Zhao, Qiang Xu, Rui-Qing Jiao, Jian-Mei Li, Ling-Dong Kong

Background and purpose

Excessive fructose consumption is a risk factor for liver fibrosis. Pterostilbene protects against liver fibrosis. Here, we investigated the potential role and the mechanisms underlying the hepatocyte epithelial-mesenchymal transition (EMT) in fructose-induced liver fibrosis and protection by pterostilbene. Experimental approach: Characteristic features of liver fibrosis in 10% fructose-fed rats and EMT in 5 mM fructose-exposed BRL-3A cells with or without pterostilbene and the change of miR-34a/Sirt1/p53 and transforming growth factor-β1 (TGF-β1)/Smads signalling were examined. MiR-34a inhibitor, miR-34a minic, or p53 siRNA were used to explore the role of miR-34a/Sirt1/p53 signalling in fructose-induced EMT and the action of pterostilbene. Key

Purpose

Excessive fructose consumption is a risk factor for liver fibrosis. Pterostilbene protects against liver fibrosis. Here, we investigated the potential role and the mechanisms underlying the hepatocyte epithelial-mesenchymal transition (EMT) in fructose-induced liver fibrosis and protection by pterostilbene. Experimental approach: Characteristic features of liver fibrosis in 10% fructose-fed rats and EMT in 5 mM fructose-exposed BRL-3A cells with or without pterostilbene and the change of miR-34a/Sirt1/p53 and transforming growth factor-β1 (TGF-β1)/Smads signalling were examined. MiR-34a inhibitor, miR-34a minic, or p53 siRNA were used to explore the role of miR-34a/Sirt1/p53 signalling in fructose-induced EMT and the action of pterostilbene. Key

Results

Pterostilbene prevented fructose-induced liver injury with fibrosis in rats. Fructose caused hepatocyte undergoing EMT, gaining fibroblast-specific protein 1 and vimentin, and losing E-cadherin, effects attenuated by pterostilbene. Moreover, fructose induced miR-34a overexpression in hepatocytes with down-regulated Sirt1, increased p53 and ac-p53, and activated TGF-β1/Smads signalling, whereas these disturbances were suppressed by miR-34a inhibitor. Additionally, miR-34a inhibitor and p53 siRNA prevented TGF-β1-driven hepatocyte EMT under fructose exposure. Pterostilbene down-regulated miR-34a, up-regulated Sirt1, and suppressed p53 activation and TGF-β1/Smads signalling in fructose-stimulated animals and cells but showed no additional effects with miR-34a inhibitor on miR-34a/Sirt1/p53 signalling in fructose-exposed hepatocytes. Conclusions and implications: These results strongly suggest that activation of miR-34a/Sirt1/p53 signalling is required for fructose-induced hepatocyte EMT mediated by TGF-β1/Smads signalling, contributing to liver fibrosis in rats. Pterostilbene exhibits a protective effect against liver fibrosis at least partly through inhibiting miR-34a/Sirt1/p53 signalling activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。