Comparison of interactions of diamine and Mg²⁺ with RNA tertiary structures: similar versus differential effects on the stabilities of diverse RNA folds

二胺和 Mg²⁺ 与 RNA 三级结构相互作用的比较:对不同 RNA 折叠稳定性的影响相似与不同

阅读:10
作者:Robert J Trachman 3rd, David E Draper

Abstract

Cations play a large role in stabilizing the native state of RNA in vivo. In addition to Mg²⁺, putrescine²⁺ is an abundant divalent cation in bacterial cells, but its effect on the folding of RNA tertiary structure has not been widely explored. In this study, we look at how the stabilities of four structured RNAs, each with a different degree of dependence on K⁺ and Mg²⁺, are affected by putrescine²⁺ relative to Mg²⁺. Through the use of thermal melts, we observe that (i) at a given concentration, putrescine²⁺ is less effective than Mg²⁺ at stabilizing RNA, (ii) the stability imparted to RNA by various diamines is a function of charge density (average separation distance between charges) as well as the flexibility of the counterion, and (iii) when Mg²⁺ is already present in a buffer, further addition of putrescine²⁺ may either destabilize or stabilize RNA structure, depending on whether the native RNA does or does not chelate Mg²⁺ ion, respectively. At ion concentrations likely to be found in vivo, the effect of putrescine²⁺ on the free energy of folding of an RNA tertiary structure is probably quite small compared to that of Mg²⁺, but the ability of mixed Mg²⁺/putrescine²⁺ environments to (in effect) discriminate between different RNA architectures suggests that, in some cells, the evolution of functional RNA structures may have been influenced by the presence of putrescine²⁺.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。