Conclusions
The results have confirmed that E19, E20, and P1 CSF could induce proliferation and differentiation of BM-MSCs though they are age dependent factors. The presented data support a significant, conductive role of CSF components in neuronal survival, proliferation, and differentiation.
Methods
In this experimental study, we confirmed the mesenchymal nature of BM-MSCs according to their adherence properties and surface markers (CD44, CD73 and CD45). The multi-potential characteristics of BMMSCs were verified by assessments of the osteogenic and adipogenic potentials of these cells. Under appropriate in vitro conditions, the BM-MSCs cultures were incubated with and without additional pre- and postnatal CSF. The MTT assay was used to quantify cellular proliferation and viability. Immunocytochemistry was used to study the expression of MAP-2 and β-III tubulin in the BM-MSCs. We used ImageJ software to measure the length of the neurites in the cultured cells.
Results
BM-MSCs differentiated into neuronal cell types when exposed to basic fibroblast growth factor (b-FGF). Viability and proliferation of the BM-MSCs conditioned with E19, E20, and P1 CSF increased compared to the control group. We observed significantly elevated neural differentiation of the BM-MSCS cultured in the CSF-supplemented medium from E19 compared to cultures conditioned with E20 and P1 CSF group. Conclusions: The results have confirmed that E19, E20, and P1 CSF could induce proliferation and differentiation of BM-MSCs though they are age dependent factors. The presented data support a significant, conductive role of CSF components in neuronal survival, proliferation, and differentiation.
