A CRISPR-dCas13 RNA-editing tool to study alternative splicing

用于研究可变剪接的 CRISPR-dCas13 RNA 编辑工具

阅读:9
作者:Yaiza Núñez-Álvarez, Tristan Espie-Caullet, Géraldine Buhagiar, Ane Rubio-Zulaika, Josune Alonso-Marañón, Elvira Luna-Pérez, Lorea Blazquez, Reini F Luco

Abstract

Alternative splicing allows multiple transcripts to be generated from the same gene to diversify the protein repertoire and gain new functions despite a limited coding genome. It can impact a wide spectrum of biological processes, including disease. However, its significance has long been underestimated due to limitations in dissecting the precise role of each splicing isoform in a physiological context. Furthermore, identifying key regulatory elements to correct deleterious splicing isoforms has proven equally challenging, increasing the difficulty of tackling the role of alternative splicing in cell biology. In this work, we take advantage of dCasRx, a catalytically inactive RNA targeting CRISPR-dCas13 ortholog, to efficiently switch alternative splicing patterns of endogenous transcripts without affecting overall gene expression levels cost-effectively. Additionally, we demonstrate a new application for the dCasRx splice-editing system to identify key regulatory RNA elements of specific splicing events. With this approach, we are expanding the RNA toolkit to better understand the regulatory mechanisms underlying alternative splicing and its physiological impact in various biological processes, including pathological conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。