Multiple subnuclear targeting signals of the leukemia-related AML1/ETO and ETO repressor proteins

白血病相关 AML1/ETO 和 ETO 抑制蛋白的多个亚核靶向信号

阅读:11
作者:Karina Barseguian, Bart Lutterbach, Scott W Hiebert, Jeffrey Nickerson, Jane B Lian, Janet L Stein, Andre J van Wijnen, Gary S Stein

Abstract

Leukemic disease can be linked to aberrant gene expression. This often is the result of molecular alterations in transcription factors that lead to their misrouting within the nucleus. The acute myelogenous leukemia-related fusion protein AML1ETO is a striking example. It originates from a gene rearrangement t(8;21) that fuses the N-terminal part of the key hematopoietic regulatory factor AML1 (RUNX1) to the ETO (MTG8) repressor protein. AML1ETO lacks the intranuclear targeting signal of the wild-type AML1 and is directed by the ETO component to alternate nuclear matrix-associated sites. To understand this aberrant subnuclear trafficking of AML1ETO, we created a series of mutations in the ETO protein. These were characterized biochemically by immunoblotting and in situ by immunofluorescence microscopy. We identified two independent subnuclear targeting signals in the N- and C-terminal regions of ETO that together direct ETO to the same binding sites occupied by AML1ETO. However, each segment alone is targeted to a different intranuclear location. The N-terminal segment contains a nuclear localization signal and the conserved hydrophobic heptad repeat domain responsible for protein dimerization and interaction with the mSin3A transcriptional repressor. The C-terminal segment spans the nervy domain and the zinc finger region, which together support interactions with the corepressors N-CoR and HDACs. Our findings provide a molecular basis for aberrant subnuclear targeting of the AML1ETO protein, which is a principal defect in t(8;21)-related acute myelogenous leukemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。