Chemical synthesis and spontaneous folding of a multidomain protein: anticoagulant microprotein S

多结构域蛋白质的化学合成和自发折叠:抗凝微生物蛋白 S

阅读:6
作者:T M Hackeng, J A Fernández, P E Dawson, S B Kent, J H Griffin

Abstract

Because of recent high-yield native ligation techniques, chemical synthesis of larger multidomain bioactive proteins is rapidly coming within reach. Here we describe the total chemical synthesis of a designed "microprotein S," comprising the gamma-carboxyglutamic acid-rich module, the thrombin-sensitive module, and the first epidermal growth factor-like module of human plasma protein S (residues 1-116). Synthetic microprotein S expressed anticoagulant cofactor activity for activated protein C in the down-regulation of blood coagulation, and the anticoagulant activity of microprotein S was not neutralized by C4b-binding protein, a natural inhibitor of native protein S in plasma. The correct folding of this complex multidomain protein was enhanced compared with individual modules because the gamma-carboxyglutamic acid-rich module and the thrombin-sensitive module markedly facilitated correct folding of the first epidermal growth factor-like module compared with folding of the first epidermal growth factor-like module alone. These results demonstrate that total chemical synthesis of proteins offers an effective way to generate multidomain biologically active proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。