Mechanical analysis of an MgB2 1.5 T MRI main magnet protected using Coupling Loss Induced Quench

采用耦合损耗诱导失超保护的 MgB2 1.5 T MRI 主磁体的机械分析

阅读:6
作者:Charles Poole, Abdullah Al Amin, Tanvir Baig, Michael Martens

Abstract

Mechanical analysis of the stress and strains developed in the coils were calculated for a ten coil 1.5 T MRI magnet design with magnesium diboride (MgB2) wire protected with Coupling Loss Induced Quench (CLIQ). The temperature distribution inside the coils was first simulated in MATLAB to solve the governing heat and circuit equations. Simulations were performed on the magnet, in which each coil was divided into two subsections, with two CLIQ units while the capacitor ranged from 5 to 20 mF and the initial charging voltage ranged from 2.6 kV to 1.3 kV in order to keep the total stored energy in the CLIQ system constant. The wire's filamentary twist pitch remained constant at 5 cm for all simulations. The exported temperature distribution was expanded to form a representative unit cell (RUC) representing the wire composite and then imported into ANSYS to calculate the 1st principle strain in the MgB2 filament and shear stress across the epoxy for the coils. A peak temperature of 191 K occurred inside the coil with the initial quench when the CLIQ unit had a 20 mF capacitor charged to 1.3 kV. According to the mechanical simulations, the largest resulting peak strain in the wire was 0.034%, and peak shear stress was 44 MPa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。