Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration

人类 tau 积累促进糖原合酶激酶-3β 乙酰化,从而上调激酶:阿尔茨海默病神经变性中的恶性循环

阅读:6
作者:Qiuzhi Zhou, Shihong Li, Mengzhu Li, Dan Ke, Qun Wang, Ying Yang, Gong-Ping Liu, Xiao-Chuan Wang, Enjie Liu, Jian-Zhi Wang

Background

Glycogen synthase kinase-3β (GSK-3β) is one of the most effective kinases in promoting tau hyperphosphorylation and accumulation in Alzheimer's disease (AD). However, it is not clear how GSK-3β activity is regulated during AD progression.

Methods

We firstly used mass spectrometry to identify the acetylation site of GSK-3β, and then established the cell and animal models of GSK-3β acetylation. Next, we conducted molecular, cell biological and behavioral tests. Finally, we designed a peptide to test whether blocking tau-mediated GSK-3β acetylation could be beneficial to AD. Findings: We found that GSK-3β protein levels increased in the brains of AD patients and the transgenic mice. Overexpressing tau increased GSK-3β protein level with increased acetylation and decreased ubiquitination-related proteolysis. Tau could directly acetylate GSK-3β at K15 both in vitro and in vivo. K15-acetylation inhibited ubiquitination-associated proteolysis of GSK-3β and changed its activity-dependent phosphorylation, leading to over-activation of the kinase. GSK-3β activation by K15-acetylation in turn exacerbated the AD-like pathologies. Importantly, competitively inhibiting GSK-3β K15-acetylation by a novel-designed peptide remarkably improved cognitive impairment and the AD-like pathologies in 3xTg-AD mice. Interpretation: Tau can directly acetylate GSK-3β at K15 which reveals a vicious cycle between tau hyperphosphorylation and GSK-3β activation. Funding: This study was supported in parts by grants from Science and Technology Committee of China (2016YFC1305800), Hubei Province (2018ACA142), Natural Science Foundation of China (91949205, 82001134, 31730035, 81721005), Guangdong Provincial Key S&T Program (018B030336001).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。