HLA-associated protection of lymphocytes during influenza virus infection

流感病毒感染期间 HLA 相关淋巴细胞保护

阅读:4
作者:Eliana E Ochoa, Ruksana Huda, Steven F Scheibel, Joan E Nichols, David J Mock, Nayef El-Daher, Frank M Domurat, Norbert J Roberts Jr

Background

Heterozygosity at HLA class I loci is generally considered beneficial for host defense. We report here an element of HLA class I homozygosity that may or may not help preserve its existence in populations but which could indicate a new avenue for antiviral research.

Conclusions

A significant proportion of individuals within a population that is characterized by common expression of HLA class I alleles may possess lymphocytes that are not susceptible to influenza virus infection and thus to mutual virus-specific lysis. Further study may identify new approaches to limit influenza virus infection.

Methods

Lymphocytes from serologically HLA-homozygous or -heterozygous donors were examined for synthesis of influenza virus proteins and RNA after exposure to virus as peripheral blood mononuclear cells. The virus-exposed lymphocytes were also examined for internalization of the virus after exposure, and for susceptibility to virus-specific cytotoxic T lymphocytes in comparison with virus-exposed monocytes/macrophages and unseparated peripheral blood mononuclear cells.

Results

Serologically-defined HLA-A2-homozygous lymphocytes, in contrast to heterozygous lymphocytes, did not synthesize detectable influenza virus RNA or protein after exposure to the virus. HLA-A2-homozygous lymphocytes, including both homozygous and heterozygous donors by genetic sequence subtyping, did internalize infectious virus but were not susceptible to lysis by autologous virus-specific cytotoxic T lymphocytes ("fratricide"). Similar intrinsic resistance to influenza virus infection was observed with HLA-A1- and HLA-A11-homozygous lymphocytes and with HLA-B-homozygous lymphocytes. Conclusions: A significant proportion of individuals within a population that is characterized by common expression of HLA class I alleles may possess lymphocytes that are not susceptible to influenza virus infection and thus to mutual virus-specific lysis. Further study may identify new approaches to limit influenza virus infection.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。