Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes

伯纳特氏柯克斯体 IV 型分泌依赖性巨噬细胞自噬体募集

阅读:4
作者:Caylin G Winchell, Joseph G Graham, Richard C Kurten, Daniel E Voth

Abstract

Coxiella burnetii is an intracellular Gram-negative bacterium that causes human Q fever, a flu-like disease that can progress to chronic, life-threatening endocarditis. In humans, C. burnetii infects alveolar macrophages and promotes phagosomal fusion with autophagosomes and lysosomes, establishing a unique parasitophorous vacuole (PV) in which to replicate. The pathogen uses a Dot/Icm type IV secretion system (T4SS) to deliver effector proteins to the host cytoplasm, where they alter cellular processes to benefit the pathogen. The T4SS is required for PV expansion and prevention of apoptosis, but little else is known about the role of the system during intracellular growth. Recent reports suggest that C. burnetii actively recruits autophagosomes to the PV to deliver nutrients to the pathogen and provide membrane for the expanding vacuole. In this study, we examined the role of the T4SS in mediating PV interactions with autophagosomes. We found that the autophagy-related proteins LC3 and p62 localized to wild-type PV but not to T4SS mutant organism-containing phagosomes in human macrophage-like cells, primary human alveolar macrophages, and Chinese hamster ovary cells. However, while lipidated LC3 levels were elevated regardless of T4SS activity, no p62 turnover was observed during C. burnetii growth in macrophages, suggesting that the pathogen recruits preformed autophagosomes. When the T4SS was activated 24 h after infection, autophagosome recruitment ensued, indicating that autophagosome interactions are dispensable for initial PV maturation to a phagolysosome-like compartment but are involved in vacuole expansion. Together, these results demonstrate that C. burnetii actively directs PV-autophagosome interactions by using the Dot/Icm T4SS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。