An investigation of the long-range and local structure of sub-stoichiometric zirconium carbide sintered at different temperatures

不同温度下烧结的亚化学计量碳化锆的长程和局部结构研究

阅读:7
作者:Dhan-Sham B K Rana, Eugenio Zapatas Solvas, William E Lee, Ian Farnan

Abstract

ZrC1-x (sub-stoichiometric zirconium carbide), a group IV transition metal carbide, is being considered for various high temperature applications. Departure from stoichiometry changes the thermo-physical response of the material. Reported thermo-physical properties exhibit, in some cases, a degree of scatter with one likely contributor to this being the uncertainty in the C/Zr ratio of the samples produced. Conventional, methods for assigning C/Zr to samples are determined either by nominal stochiometric ratios or combustion carbon analysis. In this study, a range of stoichiometries of hot-pressed ZrC1-x were examined by SEM, XRD, Raman spectroscopy and static 13C NMR spectroscopy and used as a basis to correct the C/Zr. Graphite, amorphous, and ZrC1-x carbon signatures are observed in the 13C NMR spectra of samples and are determined to vary in intensity with sintering temperature and stoichiometry. In this study a method is outlined to quantify the stoichiometry of ZrC1-x and free carbon phases, providing an improvement over the sole use and reliance of widely adopted bulk carbon combustion analysis. We report significantly lower C/Zr values determined by 13C NMR analysis compared with carbon analyser and nominal methods. Furthermore, the location of carbon disassociated from the ZrC1-x structure is analysed using SEM and Raman spectroscopy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。