alpha3alpha5beta2-Nicotinic acetylcholine receptor contributes to the wound repair of the respiratory epithelium by modulating intracellular calcium in migrating cells

alpha3alpha5beta2-烟碱乙酰胆碱受体通过调节迁移细胞内的钙离子促进呼吸道上皮细胞的伤口修复

阅读:5
作者:Jean-Marie Tournier, Kamel Maouche, Christelle Coraux, Jean-Marie Zahm, Isabelle Cloëz-Tayarani, Béatrice Nawrocki-Raby, Arnaud Bonnomet, Henriette Burlet, François Lebargy, Myriam Polette, Philippe Birembaut

Abstract

Nicotinic acetylcholine receptors (nAChRs), present in human bronchial epithelial cells (HBECs), have been shown in vitro to modulate cell shape. Because cell spreading and migration are important mechanisms involved in the repair of the bronchial epithelium, we investigated the potential role of nAChRs in the wound repair of the bronchial epithelium. In vivo and in vitro, alpha3alpha5beta2-nAChRs accumulated in migrating HBECs involved in repairing a wound, whereas alpha7-nAChRs were predominantly observed in stationary confluent cells. Wound repair was improved in the presence of nAChR agonists, nicotine, and acetylcholine, and delayed in the presence of alpha3beta2 neuronal nAChR antagonists, mecamylamine, alpha-conotoxin MII, and kappa-bungarotoxin; alpha-bungarotoxin, an antagonist of alpha7-nAChR, had no effect. Addition of nicotine to a repairing wound resulted in a dose-dependent transient increase of intracellular calcium in migrating cells that line the wound edge. Mecamylamine and kappa-bungarotoxin inhibited both the cell-migration speed and the nicotine-induced intracellular calcium increase in wound-repairing migrating cells in vitro. On the contrary alpha-bungarotoxin had no significant effect on migrating cells. These results suggest that alpha3alpha5beta2-nAChRs actively contribute to the wound repair process of the respiratory epithelium by modulating intracellular calcium in wound-repairing migrating cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。