A poly(beta-amino ester) activates macrophages independent of NF-κB signaling

聚(β-氨基酯)不依赖 NF-κB 信号激活巨噬细胞

阅读:8
作者:Neil M Dold, Qin Zeng, Xiangbin Zeng, Christopher M Jewell

Abstract

Nucleic acid delivery vehicles are poised to play an important role in delivering gene therapy for vaccines and immunotherapies, and in delivering nucleic acid based adjuvants. A number of common polymeric delivery vehicles used in nucleic acid delivery have recently been shown to interact with immune cells and directly stimulate immunogenic responses, particularly in particle form. Poly(beta-amino esters) were designed for nucleic acid delivery and have demonstrated promising performance in a number of vaccine and therapeutic studies. Yet, little work has characterized the mechanisms by which these polymers activate immune cells. Here we demonstrate that a poly(beta-amino ester) activates antigen presenting cells in soluble and particulate forms, and that these effects are independent of TLR signaling pathways. Moreover, we show the polymers induce activation independent of NF-κB signaling, but do activate IRF, an important innate inflammatory pathway. New knowledge linking physicochemical features of poly(beta-amino esters) or other polymeric carriers to inflammatory mechanisms could support more rational design approaches for vaccines and immunotherapies harnessing these materials. Significance statement: The last several years have brought exciting work exploring biomaterials as delivery vehicles for immunotherapies, vaccines, and gene therapies. However, a gap remains between the striking finding that many biomaterials exhibit intrinsic immunogenic features, and the specific structural properties that drive these responses. The results in the current study indicate PBAEs cause macrophage activation by pathways that are distinct from pathways activated by common vaccine and immunotherapies components, such as toll-like receptor agonists. Thus, the work reveals new mechanistic details that can be exploited in investigating other materials, and to support more rational design of future biomaterial vaccines and immunotherapy carriers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。