Chitosan complements entrapment of silicon inside nitrogen doped carbon to improve and stabilize the capacity of Li-ion batteries

壳聚糖补充氮掺杂碳中硅的包覆,以提高和稳定锂离子电池的容量

阅读:6
作者:K Prasanna, T Subburaj, Yong Nam Jo, P Santhoshkumar, S K S Saravana Karthikeyan, Kumaran Vediappan, R M Gnanamuthu, Chang Woo Lee

Abstract

A facile strategy to entrap milled silicon (m-Si) particles using nitrogen-doped-carbon (N-C@m-Si) to overcome the dramatic volume changes in Si during intercalation of lithium ions and to improve its electronic conductivity is reported here. The only natural nitrogen containing biomaterial alkaline polysaccharide, i.e., chitosan, is used as the carbon source. Simple hydrothermal technique followed by a subsequent carbonization process is used to synthesize N-C and N-C@m-Si particles. N-C@m-Si exhibited significantly improved electrochemical performance as compared to bare m-Si, which is confirmed by the obtained discharge capacity of 942.4 mAh g-1 and columbic efficiency of 97% after 50 cycles at 0.1C rate. With regard to the N-C electrodes, the obtained discharge capacity of 485.34 mAh g-1 and columbic efficiency of 99.78%, after 50 cycles at 0.1C rate is superior to the commercial graphite electrodes. The solid electrolyte interphase (SEI) layer that formed over m-Si and N-C@m-Si electrodes is characterized using X-ray photoelectron spectroscopy. Compared to the SEI layer that formed over m-Si electrode after 10 charge-discharge cycles, the N-C@m-Si electrode had a stable lithium fluoride and carbonate species. Brief reaction mechanisms, representing the formation of different species in the SEI layer, is derived to explain its behavior during the electrochemical processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。