Stereoisomer-specific reprogramming of a bacterial flagellin sialyltransferase

细菌鞭毛蛋白唾液酸转移酶的立体异构体特异性重编程

阅读:9
作者:Nicolas Kint, Thomas Dubois, Patrick H Viollier

Abstract

Glycosylation of surface structures diversifies cells chemically and physically. Nucleotide-activated sialic acids commonly serve as glycosyl donors, particularly pseudaminic acid (Pse) and its stereoisomer legionaminic acid (Leg), which decorate eubacterial and archaeal surface layers or protein appendages. FlmG, a recently identified protein sialyltransferase, O-glycosylates flagellins, the subunits of the flagellar filament. We show that flagellin glycosylation and motility in Caulobacter crescentus and Brevundimonas subvibrioides is conferred by functionally insulated Pse and Leg biosynthesis pathways, respectively, and by specialized FlmG orthologs. We established a genetic glyco-profiling platform for the classification of Pse or Leg biosynthesis pathways, discovered a signature determinant of eubacterial and archaeal Leg biosynthesis, and validated it by reconstitution experiments in a heterologous host. Finally, by rewiring FlmG glycosylation using chimeras, we defined two modular determinants that govern flagellin glycosyltransferase specificity: a glycosyltransferase domain that either donates Leg or Pse and a specialized flagellin-binding domain that identifies the acceptor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。