Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo

细菌凝聚素 MukBEF 在体外和体内进行 DNA 桥接的机制

阅读:12
作者:Zoya M Petrushenko, Yuanbo Cui, Weifeng She, Valentin V Rybenkov

Abstract

Structural maintenance of chromosome (SMC) proteins comprise the core of several specialized complexes that stabilize the global architecture of the chromosomes by dynamically linking distant DNA fragments. This reaction however remains poorly understood giving rise to numerous proposed mechanisms of the proteins. Using two novel assays, we investigated real-time formation of DNA bridges by bacterial condensin MukBEF. We report that MukBEF can efficiently bridge two DNAs and that this reaction involves multiple steps. The reaction begins with the formation of a stable MukB-DNA complex, which can further capture another protein-free DNA fragment. The initial tether is unstable but is quickly strengthened by additional MukBs. DNA bridging is modulated but is not strictly dependent on ATP and MukEF. The reaction revealed high preference for right-handed DNA crossings indicating that bridging involves physical association of MukB with both DNAs. Our data establish a comprehensive view of DNA bridging by MukBEF, which could explain how SMCs establish both intra- and interchromosomal links inside the cell and indicate that DNA binding and bridging could be separately regulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。