Biological magnetic cellular spheroids as building blocks for tissue engineering

生物磁性细胞球体作为组织工程的构建块

阅读:5
作者:Brandon Mattix, Timothy R Olsen, Yu Gu, Megan Casco, Austin Herbst, Dan T Simionescu, Richard P Visconti, Konstantin G Kornev, Frank Alexis

Abstract

Magnetic nanoparticles (MNPs), primarily iron oxide nanoparticles, have been incorporated into cellular spheroids to allow for magnetic manipulation into desired shapes, patterns and 3-D tissue constructs using magnetic forces. However, the direct and long-term interaction of iron oxide nanoparticles with cells and biological systems can induce adverse effects on cell viability, phenotype and function, and remain a critical concern. Here we report the preparation of biological magnetic cellular spheroids containing magnetoferritin, a biological MNP, capable of serving as a biological alternative to iron oxide magnetic cellular spheroids as tissue engineered building blocks. Magnetoferritin NPs were incorporated into 3-D cellular spheroids with no adverse effects on cell viability up to 1 week. Additionally, cellular spheroids containing magnetoferritin NPs were magnetically patterned and fused into a tissue ring to demonstrate its potential for tissue engineering applications. These results present a biological approach that can serve as an alternative to the commonly used iron oxide magnetic cellular spheroids, which often require complex surface modifications of iron oxide NPs to reduce the adverse effects on cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。