The feasibility of determining kinetic constants from isothermal titration calorimetry data

从等温滴定量热法数据确定动力学常数的可行性

阅读:6
作者:Shih-Chia Tso, Thomas A Jowitt, Chad A Brautigam

Abstract

Isothermal titration calorimetry (ITC) has long been established as an excellent means to determine the thermodynamic parameters of biomolecular interactions. More recently, efforts have focused on exploiting the power/time trace (the "thermogram") resulting from ITC experiments to glean kinetic association and dissociation rates for these interactions. The success of such analyses rests on the ability of algorithms to simulate with high accuracy the output of the calorimeter. Thus, several critical factors must be taken into account: the injection protocol, the kinetics of the interaction, accurate discovery of the instrumental response to heat signals, and the addition of unrelated signals. All of these aspects of extracting kinetic constants from thermograms have been considered and addressed in the current work. To validate the resultant methods, we performed several ITC experiments, titrating small-molecule inhibitors into solutions of bovine carbonic anhydrase II or titrating lysozyme into solutions of anti-lysozyme nanobodies. We found that our methods could arrive at kinetic constants that were close to the known values for these interactions taken from other methods. Finally, the effort to improve ITC kinetic characterizations uncovered a set of best practices for both the calorimetric experiment and the subsequent analyses (termed "kinetically optimized ITC" or "KO-ITC") that is detailed in this work.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。