Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes

用序列特异性荧光探针标记的纳米通道中的 DNA 单分子线性分析

阅读:6
作者:Somes K Das, Michael D Austin, Matthew C Akana, Paru Deshpande, Han Cao, Ming Xiao

Abstract

An array of nano-channels was fabricated from silicon based semiconductor materials to stretch long, native dsDNA. Here we present a labeling scheme in which it is possible to identify the location of specific sequences along the stretched DNA molecules. The scheme proceeds by first using the strand displacement activity of the Vent (exo-) polymerase to generate single strand flaps on nicked dsDNA. These single strand flaps are hybridized with sequence specific fluorophore-labeled probes. Subsequent imaging of the DNA molecules inside a nano-channel array device allows for quantitative identification of the location of probes. The highly efficient DNA hybridization on the ss-DNA flaps is an excellent method to identify the sequence motifs of dsDNA as it gives us unique ability to control the length of the probe sequence and thus the frequency of hybridization sites on the DNA. We have also shown that this technique can be extended to a multi color labeling scheme by using different dye labeled probes or by combining with a DNA- polymerase-mediated incorporation of fluorophore-labeled nucleotides on nicking sites. Thus this labeling chemistry in conjunction with the nano-channel platform can be a powerful tool to solve complex structural variations in DNA which is of importance for both research and clinical diagnostics of genetic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。