A bottom-up characterization of transfer functions for synthetic biology designs: lessons from enzymology

合成生物学设计传递函数的自下而上的表征:从酶学中吸取的教训

阅读:10
作者:Max Carbonell-Ballestero, Salva Duran-Nebreda, Raúl Montañez, Ricard Solé, Javier Macía, Carlos Rodríguez-Caso

Abstract

Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses-the so-called transfer function-and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。