Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

醛固酮通过降低葡萄糖-6-磷酸脱氢酶活性来损害血管反应性

阅读:5
作者:Jane A Leopold, Aamir Dam, Bradley A Maron, Anne W Scribner, Ronglih Liao, Diane E Handy, Robert C Stanton, Bertram Pitt, Joseph Loscalzo

Abstract

Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanisms by which aldosterone promotes endothelial dysfunction remain unknown. Glucose-6-phosphate dehydrogenase (G6PD) modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO(*)). Here we show that aldosterone (10(-9)-;10(-7) mol/l) decreased endothelial G6PD expression and activity in vitro, resulting in increased oxidant stress and decreased NO(*) levels-similar to what is observed in G6PD-deficient endothelial cells. Aldosterone decreased G6PD expression by increasing expression of the cyclic AMP-response element modulator (CREM) to inhibit cyclic AMP-response element binding protein (CREB)-mediated G6PD transcription. In vivo, infusion of aldosterone decreased vascular G6PD expression and impaired vascular reactivity. These effects were abrogated by spironolactone or vascular gene transfer of G6pd. These findings demonstrate that aldosterone induces a G6PD-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6PD activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。