Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells

设计的表观基因组修饰剂可实现临床相关人类细胞中强有力且持续的基因沉默

阅读:7
作者:Tafadzwa Mlambo, Sandra Nitsch, Markus Hildenbeutel, Marianna Romito, Maximilian Müller, Claudia Bossen, Sven Diederichs, Tatjana I Cornu, Toni Cathomen, Claudio Mussolino

Abstract

Targeted modulation of gene expression represents a valuable approach to understand the mechanisms governing gene regulation. In a therapeutic context, it can be exploited to selectively modify the aberrant expression of a disease-causing gene or to provide the target cells with a new function. Here, we have established a novel platform for achieving precision epigenome editing using designer epigenome modifiers (DEMs). DEMs combine in a single molecule a DNA binding domain based on highly specific transcription activator-like effectors (TALEs) and several effector domains capable of inducing DNA methylation and locally altering the chromatin structure to silence target gene expression. We designed DEMs to target two human genes, CCR5 and CXCR4, with the aim of epigenetically silencing their expression in primary human T lymphocytes. We observed robust and sustained target gene silencing associated with reduced chromatin accessibility, increased promoter methylation at the target sites and undetectable changes in global gene expression. Our results demonstrate that DEMs can be successfully used to silence target gene expression in primary human cells with remarkably high specificity, paving the way for the establishment of a potential new class of therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。