Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells

小鼠肺微循环中 B16 黑色素瘤细胞的停滞会诱导内皮型一氧化氮合酶依赖性一氧化氮释放,而这种一氧化氮对肿瘤细胞具有细胞毒性

阅读:6
作者:Hongming Qiu, F William Orr, Derrek Jensen, Hui Helen Wang, Alan R McIntosh, Brian B Hasinoff, Dwight M Nance, Susan Pylypas, Ke Qi, Chun Song, Ruth J Muschel, Abu-Bakr Al-Mehdi

Abstract

Metastatic cancer cells seed the lung via blood vessels. Because endothelial cells generate nitric oxide (NO) in response to shear stress, we postulated that the arrest of cancer cells in the pulmonary microcirculation causes the release of NO in the lung. After intravenous injection of B16F1 melanoma cells, pulmonary NO increased sevenfold throughout 20 minutes and approached basal levels by 4 hours. NO induction was blocked by N(G)-nitro-L-arginine methyl ester (L-NAME) and was not observed in endothelial nitric oxide synthase (eNOS)-deficient mice. NO production, visualized ex vivo with the fluorescent NO probe diaminofluorescein diacetate, increased rapidly at the site of tumor cell arrest, and continued to increase throughout 20 minutes. Arrested tumor cells underwent apoptosis with apoptotic counts more than threefold over baseline at 8 and 48 hours. Neither the NO signals nor increased apoptosis were seen in eNOS knockout mice or mice pretreated with L-NAME. At 48 hours, 83% of the arrested cells had cleared from the lungs of wild-type mice but only approximately 55% of the cells cleared from eNOS-deficient or L-NAME pretreated mice. eNOS knockout and L-NAME-treated mice had twofold to fivefold more metastases than wild-type mice, measured by the number of surface nodules or by histomorphometry. We conclude that tumor cell arrest in the pulmonary microcirculation induces eNOS-dependent NO release by the endothelium adjacent to the arrested tumor cells and that NO is one factor that causes tumor cell apoptosis, clearance from the lung, and inhibition of metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。