Neuronal survival depends on EGFR signaling in cortical but not midbrain astrocytes

神经元存活依赖于皮质而非中脑星形胶质细胞中的 EGFR 信号传导

阅读:8
作者:Bettina Wagner, Anuradha Natarajan, Sabine Grünaug, Renate Kroismayr, Erwin F Wagner, Maria Sibilia

Abstract

Mice lacking epidermal growth factor receptor (EGFR) develop a neurodegeneration of unknown etiology affecting exclusively the frontal cortex and olfactory bulbs. Here, we show that EGFR signaling controls cortical degeneration by regulating cortical astrocyte apoptosis. Whereas EGFR(-/-) midbrain astrocytes are unaffected, mutant cortical astrocytes display increased apoptosis mediated by an Akt-caspase-dependent mechanism and are unable to support neuronal survival. The expression of many neurotrophic factors is unaltered in EGFR(-/-) cortical astrocytes suggesting that neuronal loss occurs as a consequence of increased astrocyte apoptosis rather than impaired secretion of trophic factors. Neuron-specific expression of activated Ras can compensate for the deficiency of EGFR(-/-) cortical astrocytes and prevent neuronal death. These results identify two functionally distinct astrocyte populations, which differentially depend on EGFR signaling for their survival and also for their ability to support neuronal survival. These spatial differences in astrocyte composition provide a mechanism for the region-specific neurodegeneration in EGFR(-/-) mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。